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The stability of the equilibrium position of a non-linearly elastic rectangular beam under tension when it is subject to small plane 
perturbations is investigated. The material is assumed to be homogeneous, isotropic and incompress~le. Sufficient criteria of 
stability and instability of the uniform deformation of a beam under tension are obtained. It is established that flexural instability 
always takes the form of surface bulging. For a thin beam, it is shown that there are no lower-order flexural modes. It is also 
shown that for medium values of the relative thickness of the beam a loss of stability with the formation of a "neck" occurs for 
smaller extensions thaa flexural bulging. The asymptotic form of the critical deformation is constructed with a wide range of 
applicability. Specific models of highly elastic materials are described for which instability of the equil~dum of the beam under 
a tensile load is poss~?.e. © 1997 Elsevier Science Ltd. All rights reserved. 

1. F O R M U L A T I O N  A N D  S O L U T I O N  O F  T H E  B O U N D A R Y - V A L U E  
P R O B L E M  O F  T H E  B I F U R C A T I O N  O F  T H E  E Q U I L I B R I U M  O F  A B E A M  

We will consider  the h o m o g e n e o u s  plane de format ion  

X = k x ,  y=~-Iy ,  Z = z  (~.=const) (1.1) 

of  an elastic rect i l inear  b e a m  Ix I ~< a, [y [ ~< h, loaded on the side facesx  = _ a  by uniformly dis tr ibuted 
normal  forces  o f  intensity q (per  unit  area  of  the actual  configuration).  The  length and thickness o f  the 
b e a m  are  a s sumed  to have dimensions  of  2a and 2h, respectively. T h e  third d i m e n s i o n - - t h e  w i d t h - -  
plays no par t  he re  and can be chosen arbitrarily. We will assume that  there  are no mass  forces and  that  
the end facesy  = ± h  are stress free. The  mater ia l  o f  the beam is assumed to be  homogeneous ,  isotropic 
and incompressible .  U n d e r  these condit ions the pa r ame te r s  q and ~. are related as follows: 

q=G(~.2-~ . -2) ,  G = 2 ( c 1 + c 2 )  , c m = ~ l ' l l t ) l  m ( m = l , 2 )  
(1.2) 

2 2 12 =Vl-2 .4_U f2 .t.032 ]1 = V ? + V  2 +V 3, 

H e r e  x, y, z and  X', Y, Z are the Car tes ian coordinates  before  and af ter  deformat ion ,  respectively, v+ 
(l = 1, 2, 3) are  the principal  extensions [1, 2], G is the shear  modulus  of  the mater ia l  for  a small  
de fo rma t ion  f rom the equi l ibr ium state (1.1) for a s imple shear  in the X Y  plane,  I m (m = 1, 2) are the 
first and second principal  invariants of  the Finger  measure  of  deformat ion  [2], and H = l ' I ( l l , /2)  is the 
specific potent ia l  energy of  de fo rmat ion  of  the elastic mater ia l  [1, 2]. The  derivatives with respect  to 
Im (m = 1, 2) in (1.2) (and later)  are  taken for  [1 = 12 = ~.2 + ~-2 + 1. We wiU assume that  the potent ia l  
H is a twice cont inuously differentiable function of  the invariants 11 and I 2 everywhere,  with the possible 
exception o f  the point  where  the de fo rmat ion  11 = 12 = 3 is measured ,  and that  the following 
requ i remen t s  are  satisfied: 

1. the mater ia l  satisfies the H a d a m a r d  inequality [1, 2] in a certain region U of  the space of  principal  
extensions V, containing the point  v0 = (1, 1, 1), corresponding to the unde fo rmed  state of  the body; 

2. at each point  o f  the connec ted  curve L,  cor responding to uniform defo rmat ion  (1.1) and s i tuated 
wholly in the region U, the inequali ty G > 0 is satisfied. 

As a consequence  of  the fact that  the mater ia l  is incompressible,  the space of  principal  extensions 
3 V is a set o f  points  ~ = (vl, v2, v3) o f  a three-d imensional  ar i thmetic  space R with positive c o m p o n e n t s  

vl, v2, v3, re la ted  by the isoch6ric condit ion VlV2V3 = 1. Note  that  l imitations 1 and 2 on the potent ia l  
H do not  contradic t  one  ano the r  since a consequence  of  the H a d a m a r d  condit ion (on curve L)  is the 
inequali ty G I> 0 [3, 4]. 

A violation of  the differentiabil i ty of  the specific energy H(I1,/2) at the point  11 = 12 = 3 is possible, 
in part icular ,  in mater ia ls  which possess physical non-l ineari ty even for  ext remely small de fo rmat ions  
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from the uncompressed state. For such materials, the governing relations cannot be linearized in the 
neighbourhood of the reference configuration. 

As an example we can consider a hypothetical material with potential 

l"I = d(l I - 3) ct (d > O, a ~ I/2) (1.3) 

for which (1.2) takes the form (C = const > 0) 

q = 2ad(~. + ~-I)(~._ ~-1)2a-I = C82a-I[1 + 0(8)] (1.4) 

Here 8 - k - 1 is the principal relative extension of the beam in the stretching direction. It can be seen from 
(1.4) that when ct ~ 1, q de P~2nds non-linearly on 8 for values of 8 as small as desired. Nevertheless, when 1/2 <~ 
ct < 1 the derivatives dl-Ildll, d l-l/dl are discontinuous at the point I1 = lz = 3. Another example is an elastic material 
with the following potential 

H=d[ l  + ( ' x / l l - 3 -  l ) e x p ' ~ l - 3 l  (d>0) (1.5) 

Unlike the previous case, for model (1.5) the stress q and the extension 8 are linearly related as 8 ~ 0. 
Nevertheless, the second derivative d21-I/dl 2 undergoes a discontinuity at the deformation point of reference. 

Note that materials (1.3) and (1.5) satisfy requirements 1 and 2 when U = V. 

We will investigate the stability of the equilibrium configuration (1.1) for small plane perturbations 
(in the XY plane). The equilibrium equations, linearized in the neighbourhood of the state (1.1), in the 
case of plane deformation have the form ~. ~ ~-z 

[(1 + ~)~2 +/)~ ]wl + ~-13j p = 0 (1.6) 

~a~ + ~,2)w 2 + ~ p  = o 

~t)lWl + ~2W2 ---- 0 (1.7) 

E: = 4G-I~. 2 (1 - y2 )2(Cll + 2c12 + c22 ) (1.8) 

Clm = t)21-I / OllOl  m ( l ,  m = 1, 2 )  

where wi (i = 1, 2) are the projections of the vector field of small displacement from the configuration 
(1.1) onto the X, Y axes of a Cartesian system of coordinates, and Oi (i = 1, 2) are the operators of 
differentiation with respect to x and y, respectively. Because the material is incompressible, system (1.6), 
(1.7) contains an unknown function of the coordinates p, which has the dimensions of pressure and is 
determined when solving the problem. Note that Eq. (1.7) is also the linearized condition of the material 
incompressibility. 

The components of the linearized Piola stress tensor [1, 2] are expressed in terms of the displacements 
w / (i = 1, 2) and the pressure p by the formulae 

Pll = G [ ( l + 7 2  +~)~JwJ +~'-'Pl , Pl2=G(~lw2 + Y~2w' ) 

P21 = G(~t~lw:' + 3"wl )' P22 = G(2~2w2 + ~'P) (1.9) 

p33=G[(×+2v)~ lwl+p] ,  P,3=P~i=0 ( i=1,2)  

v=2G- lc2~ . ( l -y2) ,  ×=4G-I(~ .+) , : ' ) ( I -y2)2[c t l+c~2( i+~.Z)+c22~.  2 ] 

Relations (1.6)--(1.9) are derived using the theory of superposition of a small deformation on a finite 
deformation [2]. 

Using (1.9) the linearized boundary conditions on the unloaded end of facesy = _ h  of the beam 
can be represented in the form 

(~¢~1W2 + ~2WI )l~=+_h : 0, (21~2W 2 + kp)%=_+ h = 0 (1.10) 

On the side faces x = ±a  we assume that the conditions for sliding support [5, 6] are satisfied, i.e. 
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there are no shear stresses and no normal displacement 

Wllx=±a=0, (~IW2 "+~2Wl)lx=±a =0 (1.11) 

Hence, in the perturbed and unperturbed equilibrium positions of the beam the longitudinal 
displacements of the particles situated at its ends x = - a ,  are the same. 

The solution of boundary-value problem (1.6), (1.7), (1.10), (1.11) was obtained previously in [7] and 
can be written in the form 

w? = Wl±(y)q~r~(ktx), w~ = W~(y)¢t(k±x) 

p± = ±~.P± (y)¢± (k ± x) (1.12) 

¢*(x) = cosx. ~0-(x) = sin x 

k+=n.mla, k-=•(2m-i) / (2a)  (m=1,2,3...) 

W~ ± (y) = I][to 2 (1 + co 2)o]t (±to]k±y) _ tot( 1 + to~)O~:Ct:to2k±y)] 

W~(y) = 13[(to~ + )'2)~:(±todc±y)_ (o~ + )'2 ) ~  (+to2k±y)] 

e±(y) = ±l~±[to~ (to~ - i)~:(+totk±y)- to~ (to~ - 1 ) ~  (+to2k±y)] 

2 + 'fl - + v 2 )2co,a,  = o 

'$~" (Oy) = ch Oy / sh Oh, ~i- (Oy) = sh Oy / ch Oh 

,~(Oy) = shOy / shOh, q~i(Oy)=chOy/chOh 

, : o , . z = ( ~ - ~ ± X / f f ~ ) / 2 ,  Ix=l+¥Z+e,  I]=(~-~o~)-' 

(1.13) 

(1.14) 

(1.15) 

Here 0 is any complex number. In (1.12)-(1.14) there are two rules for matching the "plus" and 
"minus" signs, which are independe.nt of one another. The first of these only applies to the superscripts 
of the quantities w~,p±, l~,p___, O7, (m = 1, 2), where the upper and lower signs correspond to bulging 
modes, which are symmetric and anti-symmetric with respect to the neutral line y = 0 of the beam, 
respectively. The s~ymmetrical modes describe the process by which a "neck" is formed, while the 
antisymmetric modes determine the flexural forms of bulging. The second rule operates in the remaining 
cases; here the choice of upper or lower signs in (1.12)-(1.14) is made consistently. In this rule the upper 
and lower signs define even and odd bulging modes, that are symmetrical and antisymmetrical with 
respect to the straight line x = 0, respectively. Hence, there are four types of modes---symmetrical even, 
symmetrical odd, ~,ntisymmetrical even and antisymmetrical odd. The nature of the evenness, as will 
become clear below, is not important. 

Expressions (1.13) and (1.14) lose their meaning when col= tOE. In this case we must take the limit 
in them as oh ---) 0h. 

Note that a consequence of limitation 1 on the potential H is the inequality 

~t + 2y ~ 0 (1.16) 

from which, in particular, it can be seen that the quantities tom (m = 1, 2) are either real (IX t> 2y) or 
complex-conjugate (I Ix I < 2),). Moreover, it can be shown that condition (1.16) ensures a monotonic 
increase in the intensity q of the applied load as the extension k increases, namely, the inequality dq/dk 
> 0 holds. 

The transcendental equations (1.14) determine the critical (or bifurcational) values of the parameter 
7, for which the uniform boundary-value problem (1.6), (1.7), (1.10), (1.11) has non-trivial solutions. 
Henceforth, Eqs (1.14) will be called the characteristic equations. 
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2. ANALYSIS OF THE C H A R A C T E R I S T I C  EQUATIONS.  C R I T E R I A  OF 
THE STABILITY AND I N S T A B I L I T Y  OF THE E Q U I L I B R I U M  

P O S I T I O N  

The stability of uniform deformation (1.1) for small plane perturbations has been investigated in detail 
in [7] in the case of a compressive load (q < 0), so we will confine ourselves to be the case of the stretching 
of a beam (q > 0). We will introduce the following notation 

~ = h l a ,  F={y~(0,1) :  ( y - ~ , y ~ . l ) ~ L }  

L={(oI,v2,v3)EU: v I =~., o2=~. -I, v 3 = i  (~,>0)} 

Theorem 1. If the following inequality is satisfied at each point T e F 

la + 2y 2 >~ 0 (2.1) 

the characteristic equations (1.14) have no roots, belonging to the set F, while the second variation of 
the potential energy of the beam is positive on any virtual displacement from the equilibrium state (1.1), 
which indicates that the latter is stable to small plane perturbations for all x > 0 and ~ e F. 

Proof. Suppose v is the volume occupied by the body before deformation, V is the nabla-operator in 
the metric of the undistorted state, o 5 are the side facesx = __.a of the beam in the actual configuration, 
N ~ is the current outer normal to the surface 0 5, R ° is the vector of the location of an arbitrary particle 
in the equilibrium state (1.1), and R is the radius-vector of the same particle after a certain virtual 
displacement (parallel to the XY plane) from the equilibrium position (1.1) 

R~C2(v) ,  detVRIv=l, N±(R°) . (R-R°) Io±=0  (2.2) 

The potential energy of the beam [2] for virtual displacement (2.2) has the form 

W ( R ) = I J !  n [ f i ( v a ' V R r ) ,  I2(VR'VRr)]  do (2.3) 
O 

The superscript T in (2.3) denotes the operation of transposition of the second-rank tensor. Denoting 
the variation 8R - R - R ° by w for brevity and using the technique described in [8], we obtain for the 
second variation of the functional (2.3) (t2 -= [--a, a] x [--h, h]) 

8 2 W = 2 1 ! I  P. .Vwrdv = 

= bGIl[(ix+2y2)(~lwl) 2 +(3jw2) 2 + (/)2wl) 2 +2y(3tw2)(32wj)]dxdy. 
f l  

(2.4) 

Here 2b is the width of the beam before deformation and P is the linearized Piola stress tensor, the 
components of which are given by (1.9). In deriving (2.4) we used the incompressibility condition (1.7) 
and the second relation of (1.15). 

Since G > 0, and when the beam is stretched the parameter y is less than unity (as follows from 
(1.2)), when Ix + 2"t 2 > 0 we see from (2.4) that 82W > 0 for all w, differing from a constant. If Ix + 2y 2 
= 0, we have 82W t> 0, where the equality is only possible for vector fields w with components of the 
form wl = drx + el, w2 = dzv + e2, where d i and e i (i = 1, 2) are certain constants. But since the dis- 
placement field w necessarily satisfies the incompressibility equation (1.7) and the kinematic limitation 
N ± ( R  °) • w la_+ = 0 which follows from (2.2), we must have dl = d2 = el = 0, i.e. w = const, which 
corresponds to a rigid displacement of the body, which is of no interest here. 

The theorem is proved. 
Note that condition (2.1) lends itself to a simple physical interpretation. We consider the intensity 

Q = k-lq of the tensile forces applied to the beam when calculating the reference configuration per 
unit area and we calculate the derivative dQ/dk. Using (1.2), (1.8) and (1.15) we obtain 

dQ/dX = G(IX + 2T 2) (2.5) 

Taking into account the fact that G > 0, we see from (2.5) that inequality (2.1) is equivalent to the 
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requirement dQ/dX ~> 0. Also, since the quantity 4hbQ is the force acting at the ends x = _a  of the 
stretched beam, it follows that so long as the applied force decreases as the extension increases the 
state of uniform deformation in the stretched beam remains stable. A similar result was obtained in 
[9] by another method for a rod of compressible material. 

Hence, bifurcation of the equilibrium of a beam under tension is only possible on the descending 
part of the "force-extension" diagram. In practice, a decreasing dependence of the force on the extension 
can be obtained when the beam is deformed in a rigid testing machine. The limiting conditions of sliding 
support at the ends of the beam correspond to this case. 

The premise of Theorem 1 is met by many well-known models of incompressible elastic materials, 
for instance by the Treloar, Mooney-Rivlin, Bartenev-Khazanovich and Chernykh--Shubina models [2], 
to which the following potentials correspond 

I 7  = d ( l  I - 3 )  ( d  > O) ( 2 . 6 )  

rl =din(It - 3 ) + d 2 ( I  2 -3 )  (d,,d 2 >0)  (2.7) 

I'I ---- d(l/I +1/2 +It 3 - 3) (d > 0)  (2.8) 

I'l = dl(I/I +1/2 +1/3 - 3 ) + d 2 ( 1 / I  "-I +1/~r +1/31 - 3 )  (dr,d 2 >0)  (2.9) 

Note that materials (2.6)--(2.9) satisfy limitations 1 and 2 of Section 1 when U = V. Other examples 
give the following potentials 

FI = d  r ~exp[a(l r -3)21dlr +d21n(l 2 /3)  (d r > 0 , d  2 >0 , c t>0 )  (2.10) 

. - a  _ 3 ) ]  FI = d[(l + o)(v ~ x +o~ +v.~ - 3 ) + ( 1 -  o)(vt -a + o ;  a +v.~ (2.11) 

(d>0,1ol~< l, lX>0) 

1-I = d r J exp[k I (! I - 3) ~l ]dlj + d 2 J exp[k 2 (12 - 3) ~2 ]dl 2 

(d r >O,d 2 >O,k r >O,k 2 >O, nj >O,n 2 >0) 

(2.12) 

which correspond to the Hart-Smith model [10, 11] and the Oden model [12] and to a certain hypothetical 
material. It can be proved that relation (2.10) satisfies requirements 1 and 2 of Section 1 (where U = 
I0 and inequality (2.1) when the following conditions are satisfied 

< 8, H(ot)-  r I / 24 I> 0, 11 -= d 2 / d t (2.13) 

H(ix) z (a,/9ix 2 + 20t - 3ix) exp[(9ix + 1 - 3~]9ix 2 + 2ix ) / 2] 

The same holds for the Oden model (2.11) when Ix ~> 1 and for the hypothetical material (2.12) 
(without additional provisos). Hence, in all the cases considered the "force-extension" diagram is non- 
decreasing. 

Note that when the potential I-I is specified in the form of an explicit dependence on the principal 
extensions vl, v2 and v3, which do not allow a direct transition to be made to the variables I1 and 12 
(as, for example, in (2.11)), to calculate the parameters G, v, c, × it is more convenient to use the 
formulae 

G = ~ X ( I - y 2 ) ,  v=~(l+y)[ l - l~( l+T)-~.-I(Fl l  +I-12) ] 

~: = ~[l-12y(y 2 + 3) - II I (3y 2 + 1)] + G -j (lIt t - 21-Ii2"/+ 1-122T 2 ) 

~,=(1-I l -FI2Y) -t, x=~.-r[2(l 'Ii+Fl2)+(Fl2-21-1.~2L)(y+l)2+ 

+(I - y2 )(FI22X-I _ I-I~2X + l-l~3Z 3 _ 1-12 3 )] 

[lt=31-1/Svt, Fltm=~21-l/~ot~om (l ,m=1,2,3) 

(2.14) 
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The derivatives with respect to vt (l = 1, 2, 3) in relations (2.14) are taken for v a = L, v 2 = ~-1, 
v3= 1. 

We will now consider the case when inequality (2.1) breaks down. We will put 

R ( 7 ) = 7 3 - 2 Y  2 - 7 - 1  t , S(7) =73+272-Y+/ - t  ( 7 ~ F )  

P ( 7 ) = R ( y ) / S ( Y )  ( 7 ~ r \ r ° ) ,  r ° = i y ~ r :  s(7)=o} (2.15) 

£ ( 7 ) = g + 2 7 ,  b ( y ) = g - 2 7  (y~r)  

G ( Y )  = ~,~5, 8 ( , t )  = ~ ,  (7 ~ r) 

F , = { y • F :  la+272<0} 

We will mean by o(7), 8(7) the branches of the corresponding radicals situated in the closure of 
the first quadrant. The existence of the latter arises from relation (1.16). Henceforth, so long as it 
does not lead to misunderstandings, the arguments of the functions R(7), S(7), etc. will be omitted for 
brevity. 

Theorem 2. If the set F. is non-empty, for every element 7 e F. there will be a value x > 0 of the 
relative thickness of the beam for which, at the point 7, a bifurcation of the equilibrium of the uniform 
deformation (1.1) will occur. 

Proof. Using relations (1.15) it can be shown that, with notation (2.15), the characteristic equations 
(1.14) can be represented in the form 

R shGkx/( Gkx ) = .+_SshSk'c/( Skx ) (2.16) 

k = n n / 2  (n = 1.2,3,...) 

where the plus and minus signs denote symmetrical and antisymmetrical bulging modes, while even 
and odd values of the parameter n denote even and odd bulging modes, respectively. 

The conclusion of the theorem is obviously satisfied if and only if, for any fixed value of 7 e F., at 
least one of the equations 

RshGt](Gt) = +__SshSt](f)t) (2.17) 

has positive solutions in t. 
In fact, if t. is a positive root of any of Eqs (2.17), then for x = x.  =- t . /k  the corresponding equation 

(2.16) is solvable. The converse is also true. 
It follows from (2.15) and (1.16) that at each point 7 e F. the following inequalities are satisfied 

-27<~ l a<2y ,  191< 1 (2.18) 

We will consider two cases. Suppose initially that I li I < 27, Then o > 0, 8 = il 8 I (i is the square 
root of -1), and Eqs (2.17) can be written in the form 

sinlSIt = +toshGt, to = plSI/G (2.19) 

Clearly, Eq. (2.19) has a denumerable set of positive roots when co = 0. We will assume that to ;~ 0. 
To fix our ideas, suppose to > 0. Then, when choosing the upper sign in Eq. (2.19) the latter is equivalent 
to the following system of equations 

~t( t )  = 0 (1 = O, +1, :1:2,..) 

~t(t) - 15It - 7tl - (-i)tarcsin(toshGt) 

Itl ~< c = o'-Iarsh(~ -I) 

where the functions arcsin and arsh are understood in the sense of the principal value. If we calculate 
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the derivatives ~(,.0, ~/ ( t )  and note that when t = c the quantities ¥z,,(t), ~/2m+l(t) (/'VI = 0, ---+1, - -2 , . . . )  
take coincident values, then, using the second inequality of (2.18), it can be shown that the product of 
the functions ¥0(t), ya(t) vanishes in the interval (0, c]. This means that when the upper sign is chosen, 
Eq. (2.19) necessarily has a positive solution. The case when co < 0 can be considered in the same way. 

Suppose now that Ix = -2/ .  Then o = 0, ~i = 2/~//, and Eq. (2.17) takes the form 

~(t)  - sinl~lt](l~lt) = :t: 9 (2.20) 

Because the function ¥(t)  is continuous, the range of its values on the positive semi-axis covers the 
section [0, 1), and hence, by virtue of the second inequality in (2.18), at least one of  Eqs (2.20) has 
positive roots. Since this case exhausts possible versions of the relations between ~t and 2/, which follows 
from the first inequality of (2.18)), the theorem is proved. 

A corollary o f  Theorems 1 and 2. In order for the stretched beam to remain stable at each point ~/ 
F for an arbitrary thickness x > 0, it is necessary and sufficient that the set F. should be empty: 
F . = ~ .  

Theorem 2 indicates that the limitations imposed on the potential I-I in Section 1, do not eliminate 
the possibility of a bifurcation of the equilibrium of the stretched beam on the falling part of the 
stress-strain diagram Q = Q(k). 

The premise of  Theorem 2 is satisfied, for example, for Oden material (2.11) when ct < 1. 
In fact, in this case the Hadamard condition is satisfied in a certain limited region U of space V [4]. 

Moreover, using (2.14) it can be shown that inequality (2.11) breaks down when / < Y0, where /0  = 
[(1 or)/(1 + ct)]lr': e F, i.e. set F. is non-empty. 

Other examples of  the applicability of Theorem 2 give the following potentials 

FI =d0( I  2 - 3)+dr(11 -3)+d2(11 _3) 2 +d.~(11 _3) 3 (2.21) 

(d 0, d I . d 2. d 3 = const) 

I-I = do(11 - 3)+ d0(12 - 3)+d 2 In[l +(12 - 3)/ct] 

(d o >O,d I ~> O,d 2 I> O, oc > O) 

(2.22) 

1-1 = d o ]exp[13(1Z - 3) 2 ]dl I + d t (/2 - 3) + d 2 In[l + (12 - 3) / ix] 

(d o > 0 , d  I >/0 .d  2/> 0,ct > 0,J3 > 0) 

(2.23) 

The first of these corresponds to a Biderman material [13, 11], while the other two correspond to 
the four-constant and five-constant Alexander models [14, 11]. It has been established that the sufficient 
conditions for requirements 1 and 2 of Section 1 to be satisfied (when U = V) for materials (2.21)-(2.23) 
have the following respective forms [7, 15] 

d 0~>0,d t~>0,d 3 > ! 0 , d  I + d  3>0.  3d 2 + ~ ~ > 0  (2.24) 

d2 ~< 8dlot (2.25) 

H(13) + (8dlO~ - d2)/(8doot) ~ 0 (2.26) 

where the function H(13) in inequality (2.26) is the same as in (2.13). 
Consider the following sets of other constants 

do = 0, dl = 12, d 2 = -25, d3 = 32 (2.27) 

d 0 = 2 ,  d 1=78,  d2 =8,  a = l / T a  (2.28) 

d 0 = l ,  d1=54 ,  d2 =48,  or=t/9,  13=36 (2.29) 

A direct check shows that each of these satisfies the corresponding constraint (2.24)--(2.26), where 
in all cases the set 1". is non-empty. 
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It should be noted that with a different choice of the elasticity constants, each of the materials 
(2.21)-(2.23) may turn out to be stable no matter how much they are stretched. In particular, if the 
quantities di (i = 0, 1, 2, 3) in (2.11) are non-negative, then for the Biderman model, inequality (2.1) 
will be satisfied at each point Y e F. 

Generally speaking, Theorem 2 does not guarantee that a critical point will exist for any value of the 
parameter x > 0. The sufficient conditions for such a point to exist are given below. 

Theorem 3. We will assume that the following requirements are satisfied: 
1. the set F. is non-empty and contains at least one zero of the function R(-/); 
2. if sup F. --- 1, the quantity p(y) approaches unity as ~/---> 1 - 0. 
The following assertions then hold: 
1. for any value of the relative thickness x both symmetrical and anti-symmetrical bulging are possible; 
2. the losses of stability of a bar of any thickness occur for a finite value of the extension k; 
3. a value x0 of the parameter  x exists which, for x ~< x0, a symmetrical bifurcation occurs for a shorter 

extension than antisymmetrical; 
4. for any x > 0 and n t> 1, at least one of the modes---symmetrical or anti-symmetrical--necessarily 

exists. 
Here n is the order number of the bulging mode, which is identical with the number of existing 

nodal lines. Even an~l odd values of the order number n correspond to even and odd bulging 
modes, respectively. Consequently, for even n the quantity k ÷ plays the part of the "wave-formation" 
parameter, while for odd n the quantity k- plays this part. It is easy to show that the integer variable 
m, which occurs in the definition of the quantities k ÷ and k-, is related to n by the equation m = 
entier[(n + 1)/2]. 

The proof of the theorem is omitted. 
A check confirms that all the requirements of Theorem 3 are satisfied, for example, for a Biderman 

material when do = 0, d l =  27, d2 = --60, d 3 = 80 and for the five-constant Alexander model when do 
= 1, d 1 = 216, d2 = 96, ¢t = 1/18, [3 = 36. Note that these sets of elasticity constants also satisfy inequalities 
(2.24) and (2.26), respectively, which ensures that requirements 1 and 2 hold when U = V. 

The results of a numerical calculation of the critical values of the parameter k for a Biderman material (but just 
for those values of the constants di (i = 1, 2, 3) indicated) are given below 

0 . 0 5  O. I 0 0 . 5 0  1 .00 1 .50  2 . 0 0  

~.; ! .  17626  1 .17634  I. 17891 1 .18928  - - 

~.l . . . .  1 . 1 9 1 2 0  1 .19145  

~,~ 1 . 1 7 6 3 4  ! . 1 7 6 6 5  I .I  8 9 2 8  - 1 . 19385  1 .20738  

- - - 1 .19145  - 1 . 19605  

I. 17647  I. 1 7 6 1 6  - I.  ! 9 3 8 5  ! . 2 0 4 0 5  1 . 1 9 8 5 8  

~,3 - - 1 . 1 9 1 2 0  - 1 . 1 9 6 5 0  1 . 1 9 9 2 9  

k :  i . 1 7 6 6 5  1 .17791 - 1 . 20738  1 . 1 9 8 5 8  i . 1 9 8 1 5  

~.4 - - 1 .19145  i .  19605  I. 19929  ! . 2 0 0 0 5  

1 .17688  1 .17891 1 .19733  1 . 1 9 7 9 0  1 .19837  1 .19865  

),~ - - 1 . 20122  1 . 2 0 0 4 0  1 . 1 9 9 6 6  1 .19925  

1 . 1 7 7 1 6  1 . 1 8 0 2 0  1 .19385  1 .19858  1 .19965  1 .19899  

~k6 - - - 1 . 1 9 9 2 9  1 . 1 9 8 3 8  I .  1 9 8 8 6  

The "plus" and "minus" superscripts indicate the critical points for the cases of symmetrical and antisymmetrical 
bifurcation, respectively, while the numerical subscripts are identical with the order number n of the bulging mode 
considered. A dash denotes that there is no form of stability loss with a specified number of nodal lines. Note that, 
for fixed values of x > 0 and n ~ 1, each of the characteristic equations (1.14) may be solvable non-uniquely. In 
such cases, the table shows the critical point closest to the reference origin of the deformation ~. = 1 and which 
defines the least extension of the beam for which some bulging mode is possible. 

An analysis of the numerical results confirms that, for small and medium values of the relative beam 
thickness (approximately x ~< 1) a "neck" occurs for a smaller extension than the flexural stability loss, 
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and the order number of the corresponding bulging mode is not necessarily equal to unity. Thus, for 
x = 0.1 the critical point k~j is closest to the initial point k = 1, which corresponds to the form of stability 
loss with three ntxial lines. For larger values of x (approximately x > 1) flexural instability may start 
prior to the formation of a "neck". This occurs, in particular, when x = 1.5 and x = 2.0. Note also that, 
in the example considered, loss of stability of the stretched beam is observed for a relative extension 
of the order of 17-20%, which is quite feasible for highly elastic materials. 

There is considerable interest in the fact that, under the conditions of Theorem 3, the set A¢ of critical 
values of the par~tmeter k, corresponding to a fixed thickness x > 0 forn -- 1, 2, 3 . . . .  , necessarily has 
at least one point of condensation ~.0 (independently of the choice of x). Here, as an analysis shows, in 
the majority of cases the set A~ is localized in a very narrow neighbourhood of k °. Hence, the critical 
values of the relative extension of the beam, corresponding to different bulging modes, are extremely 
close to one another. For this reason, the actual form of the "neck" in a stretched rod is formed as a 
result of the superposition of a large number of harmonics of different orders and may differ considerably 
from sinusoidal. 

One other important feature of the bifurcation of the equilibrium of a beam under tension, as can 
be seen from the above table, is the absence of flexural modes of lower orders for small and medium 
values of x. It turns out that this fact is of a universal nature, i.e. it relates to any incompressible material 
which satisfies requirements 1 and 2 of Section 1. 

T h e o r e m  4. If an incompressible elastic material satisfies limitations 1 and 2 of Section 1, then for 
n x  <~ 1/3 there are flexural forms of stability loss of the beam possessing n nodal lines. 

The proof will be omitted. 
Comparing Theorems 3 and 4 we can conclude that within the limits of the applicability of Theorem 

3, for small values of the product n x  (the conditional limit n x  <~ 1/3) only a symmetrical form of stability 
loss occurs. For medium values of n x  (approximately 1/3 < n x  >I 4/3) antisymmetrical bulging, along 
with symmetrical bulging, is most often possible, but, as a rule, occurs for a greater extension of the 
beam than symmetrical. Finally, for large values of the product n x  ( n x  > 4/3), under the conditions of 
Theorem 3, an alternation of symmetrical and antisymmetrical modes is observed when n x  increases 
with no limit. 

Note that materials that satisfy the requirements of Theorem 3, possess two characteristic features: 
(a) stability los.,~s of the stretched beam occur for all values of x > 0; 
(b) the minimum critical value km~(X) (for a given thickness ~) is a bounded function of the parameter 

x on the ray (0, +oo). 
Such materials, by analogy with [7], can be called materials with a low stiffness for stretching. Analysis 

shows that, as in the case of the compression of a beam, limitations 1 and 2 of Section 1, imposed on 
the potential I-I, allow of the existence of materials with bifurcation properties differing from a and b. 

Examples are the models (2.21)-(2.23) for values of the elasticity constants (2.27)-(2.29), respectively, for which 
property a breaks down. Such materials, which possess a "limiting" thickness, are materials of increased stiffness 
for stretching. Another example gives the potential 

11=dl~(Jl)+d2~(J2) (d l >O,d2 >O) 

J, ,  =[/,, -I-X/(/,,  -3)(1,, +i)1/2 (m = 1.2) 

I • (x)=! v-~(I-y ~l+yJlflexp(ly) dy" xE(0,1), ~(0,1) 

which is subject to requirement a, but does not satisfy condition b. Following [7], it is logical to regard it as belonging 
to materials of medium stiffness for stretching. Hence, the problem of classifying materials, investigated in detail 
in [7] as it applies to the compression of a beam, does not lose its validity in the case of stretching, but will not be 
considered in detail here (due to lack of space). We will merely note that the bifurcation properties of a material 
for stretching and compression are, generally speaking, not identical. 

3. THE A S Y M P T O T I C  B E H A V I O U R  OF THE C R I T I C A L  VALUES OF 
THE D E F O R M A T I O N  AND THE LOAD AS x -~ 0 

As follows from Theorem 4, we are dealing with the bifurcation parameters corresponding to sym- 
metrical bulging modes, since for the antisymmetrical modes, by virtue of this theorem, the formulation 
of the problem h ~  no meaning. 
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Theorem 5. We will assume that  the set Fo is non-empty,  and sup Fo < 1. Then,  for any order  number  
n I> 1 a value x~ > 0 o f  the relative thickness x exists such that for x ~< x~ at least one  symmetrical  form 
of  stability loss of  the beam exists possessing n nodal  lines, where,  for the corresponding critical value 
~ (x )  of  the pa ramete r  7, we have the following asymptotic  formula  (x ~ 0) 

) ' n  (17) = "lto - ~1k2172 - ")(2k4174 + 0(176 ) (3.1) 

) , . = s u p F . ,  k n = n n l 2  ( n = 1 , 2 , 3  .... ) 

"~, =Y*~,/(31-tl) , ~/2=y2;2/(45IX~).  ; J=~/*(1-~ /2)  

~2 = ~,[5IX2~, + 10ix1 (2Y 2 - l )  + 23'.IX~ ] 

Here  IX1 and ~t 2 are the coefficients of  the expansion of  the function M(7) =- tt + 2"t 2 in a Taylor series 
at the point  

M ( ~ )  = t . t l ( '~  - ~ . )  + IX2(Y - .~ . )2  + ...  

The  p roof  o f  the theorem will be omitted.  

Notes. 1. From a physical point of view, the quantity 7' corresponds to the first maximum point 7t. on the curve 
Q = Q(k), which defines the relation between the tension and the extension of the beam. 

2. If, in addition, the material satisfies all the requirements of Theorem 3, then, for the above-mentioned 
thicknesses xn (n = 1, 2, 3 . . . .  ) we have the lower limit xn >~ 1/(3n). 

3. When the bifurcation point is not unique for the specified values ofn and x, we mean by ~/n(z) the deformation 
closest to the reference value 7 = 1, i.e. corresponding to the least extension of the beam, for which the form of 
stability loss with n nodal lines is possible. 

4. Taking into account the relation between the parameters ~/and ~, (~ = ~-2), and also relation (1.2), we can 
obtain asymptotic formulae for the critical values ~ (z )  and q~(x), similar in their structure to (3.1). The fact that 
the critical stress qn(x), unlike the compression case [16, 17], approaches a non-zero limit as x ~ 0, which is identical 
with the value of q for the maximum point g. is of interest. 

5. Comparison of the asymptotic form (3.1) with the results of a numerical calculation confirms that it is applicable 
over a wide range (approximately 0 < x <~ I/n) and has very high accuracy. In particular, for a Biderman material 
with values of the elasticity constants do = 0, d l =  27, de = -60, d 3 = 80 ,  the asymptotic representation for the 
critical extension k~(x), which follows from (3.1), has the form 

~'n (x) = 1.176239 + 0.004066k2x 2 + 0.000269k4x 4 +... (3.2) 

For n = 1 the relative error of (3.2) is 0.005% for x = 0.5, 0.026% for x = 0.7 and 0.14% for x = 1.0. Comparing 
these results with those obtained previously in [16, 17], we conclude that the range of applicability of asymptotic 
form (3.1) is three to four times wider than the corresponding formulae for the compression of a beam. 

4. A N A L Y S I S  O F  T H E  F O R M S  O F  S T A B I L I T Y  L O S S  

We will introduce the following notat ion 

k= n/2. 2v4 -7-ff/2. 

= ch = sh K ± = X,-" / 

K? = (Ix + 2y 2 )V ± (~) sin rl + ~ - IX2 4t~ (~) cos 11 (4.1) 

K~ = (p. + 2"[ 2 )V ~ (~) cos 11 - ~ - 122 ~t ± (~) sin 11 

~0(y) = arccos[~,('¢ 2 + ! +~t)/IS(~')l] ('t e F \ F ° )  

In (4.1) we simultaneously take both the upper  or  lower signs. Note  that in the set Fo all the radicands 
are non-negative.  For  the radicals it is usual to choose the non-negative branches.  

Theorem 6. Suppose ~, ~ F° is the bifurcation point for the specified value x > 0 for symmetrical  
(antisymmetrical) bulging of  the stretched beam and n is the order  number  of  the corresponding bulging 
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mode with bowing amplitude W~0') (W~(y)). Then the function W~(y) (W~(y)) has a single change 
of  sign over the beam thickness when the condition 211 ~ ~t + q~(T) is satisfied and no less than 
three sign changes when the last condition is violated (there are always no less than two sign changes 
over the t~ckness of the beam). The total number of sign changes is given by the formula N + = 
2n + + 1 (N- = 2n-), where 

l±)  i+(-l)t±+l signlK~K~lx n ± = entier -~- -t 2 

x en t ie r [ l  + / sign(tgrl - K± (th ~)±' )] (4.2) 

l ± = e n t i e r ( 2 ~ ) + l - s i g n l K ~ l + 2 [ s i g n ( K ~ K ~ ) + s i g n l K l ~ K ~ l ] A ±  

A + =sign(K+~-T1)+signlK+~-rl l ,  A- =I  

It is assumed that at points of discontinuity the function tg x takes the value --~. 
The proof is omitted. 

Corollary. If the inequality nx  <~ 4/3 is satisfied, then when a symmetrical form of bulging with n nodal 
lines exists the bowing amplitude W~(y) changes sign only at the pointy = 0. 

Note that this assertion, like the conclusion of Theorem 4, is universal in the sense that it relates to 
any incompressible material which satisfies limitations 1 and 2 of Section 1. The assertion that the bowing 
amplitude W-2(y) has a minimum of two sign changes also has the same property. 

Formulae (4.1) and (4.2) show that as the product nx increases, the parameters N ±, which define the 
number of sign changes in the bowing amplitudes W~(y), may increase without limit. This occurs, in 
particular, in the conditions of Theorem 3. Since N-  t> 2 always, for antisymmetric bulging of  the 
stretched beam there is necessarily at least one internal layer which preserves its initial form and 
dimensions when deformed. The visible deformation of the beam is concentrated in the lower and 
upper external layers. Hence, the flexural stability loss takes the form of surface bulging. Exactly 
the same situation occurs in symmetrical bifurcation if N + ~> 3. In the opposite case, the whole 
region occupied by the body undergoes deformation, and the stability loss has a global character. As 
the corollary of Theorem 6 shows, such instability occurs for small and medium values of the product 
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